• Technology
    • Resources
  • Company
  • Collaborate
  • Careers
  • Investors
    • News & Events
      • News Releases
      • Events
      • Presentations
    • Stock Information
      • Stock Quote & Chart
    • Corporate Governance
      • Documents & Charters
      • Leadership
      • Board of Directors
      • Committee Composition
    • Financial Information
      • SEC Filings
    • IR Resources
      • FAQs
      • Email Alerts
      • Contact IR
  • Blog
  • Contact
Nautilus Biotechnology
  • Technology
    • Resources
  • Company
  • Collaborate
  • Careers
  • Investors
    • News & Events
    • Stock Information
    • Corporate Governance
    • Financial Information
    • IR Resources
  • Blog
  • Contact

Accelerating basic research with proteomics (Part 2)

May 16, 2023
Tyler Ford
LinkedInTwitter

In this series, we discuss 3 types of research that can be accelerated by advanced proteomics technologies. This is far from an inclusive list and focuses on non-clinical research with a nod to clinical applications that can result from these research areas. As we get accessible, high-throughput proteomics technologies into the hands of researchers around the world, they’ll develop myriad applications that will reveal much more about the inner-workings of living things than we ever thought possible.

 

Want to read the full series now? Download the “Accelerating basic research with proteomics” white paper here.

 

Enhancing our understanding of biological function and dysfunction through the identification of proteoforms

You may have heard that there are roughly 20,000 genes in the human genome. One might assume that, since genes encode proteins, there can be no more than 20,000 different proteins in any given cell. However, this is far from the case. In the process of decoding the information in a gene and using it to produce a protein, that information can be contorted in a variety of ways that leave out some parts of the original gene, start the decoding processes at different places in the gene, or even edit small portions of the information. In addition, once this information is used to create a protein, the protein itself can be modified with a variety of attachments such as chemicals and sugars. All this rearranging and modification explodes the number of possible “proteoforms” that could theoretically be produced in a cell from 20,000 to millions (Aebersold et al 2018).

 

The modifications found on proteoforms can change the underlying protein’s function or even lead to its destruction. Indeed, the precise mix of proteoforms in a cell can have great impacts on cell processes, organ function, and total body health. Thus, knowing more about the proteoforms present in any given healthy or diseased cell may give scientists great insights into how these cells operate.

Image depicting a small sample of the many different protein modifications that make up proteoforms. Types of modification included in the graphic are splice variants, glycosylated proteins, and phosphorylated proteins. The image reads, "Although there are roughly 20,000 genes in the human genome, the proteins created from the information in these genes can be modified in many ways. This explodes the possible number of protein forms (proteoforms) in a cell from tens of thousands to millions. Some examples of protein modifications include: splicing - a section of the mRNA transcript encoding the protein is altered before the protein is translated. The final protein may have new parts of may have some parts removed. Glycosylation - sugar molecules of various kinds are added to the surface of the protein. These can alter how the protein interacts with other proteins both in the cell and on other cells. Phosphorylation - highly charged phosphate groups may be added to proteins. Phosphorylation often activates cellular pathways that lead to downstream functions like enhanced growth."

Unfortunately, most proteomics technologies used today can only see a small fraction of proteoforms. Reasons why include:

 

Low sensitivity limits the proteoforms that can be observed

There are many different ways proteins can be modified to create a wide array of proteoforms. However, for any given cell, it’s possible that only a few proteoforms will be present in high abundance. There may be low abundance proteoforms that have functional impacts on the cell, but they will be hard to see as the more abundant proteoforms drown out their signals on standard proteomics platforms. In addition, as most proteomics platforms look at groups of cells as opposed to individual cells, if one cell is dominated by a proteoform that is rare in other cells, that proteoform will be difficult to see.

 

Limitations due to protein fragmentation

On traditional proteomics platforms (e.g. mass spectrometers), full-length proteins are fragmented into small chunks. These small chunks are identified, and analysis software pieces together full proteins from the identified chunks. However, not all the chunks that make up the full protein will actually be identified. Some chunks will be left out of the analysis and those chunks could have modifications that are invisible to standard proteomics technologies.

 

Limited means of detection

Traditional proteomics platforms generally detect the mass of protein fragments in order to identify them. They look to see how many fragments of various weights are present and, by plotting abundance vs mass, they generate so-called “spectra” which are essentially signatures of different fragments. However, some fragments can generate very similar spectra and, without reference samples to distinguish between them, it can be difficult to identify fragments with never-before-seen modifications.

 

The benefit of detecting new proteoforms

There are many unknowns when it comes to the world of proteoforms. Scientists have made theoretical predictions about the number of proteoforms that could possibly exist, but it is not at all clear what fraction of these proteoforms are actually made, how they might be distributed across cells, and what functional consequences they have. Nonetheless, we do know that some protein modifications are highly consequential. For example, we know that an overabundance of certain types of modifications to proteins that scaffold DNA are associated with poor outcomes in cancer (Nebbioso et al 2018). If scientists can identify more proteoforms in particular cells, they can more confidently associate them with various states of health and disease. Some may even become biomarkers that indicate when a person has a particular disease and others may be targeted by novel drugs.

 

Enhancing proteoform detection with the Nautilus Proteome Analysis Platform

At Nautilus, we’re developing a proteomics platform that makes it easier to identify a much wider variety of proteoforms. Some of the ways the platform enhances proteoform identification include:

 

  • The platform is designed to analyze individual proteins in isolation. This is expected to give the platform higher sensitivity than standard proteomics platforms and thus more potential to detect relatively rare proteoforms.
  • The platform is designed to analyze full-length proteins. Thus, it is theoretically possible to identify modifications across the entire length of a protein.
  • The platform is designed to use “probes” that detect particular sequences of protein building blocks in full-length proteins. These probes can be designed to detect building blocks that have been modified in a variety of ways and thereby detect various proteoforms.

 

By getting a more in-depth view of the proteoforms that exist across cells, we hope to take the first step toward understanding how these proteoforms impact health and disease. Once scientists observe differences in proteoform abundance across cells, they can investigate whether those differences are functionally significant, but the first step is seeing what proteoforms actually exist. We expect our platform to bring us a long way toward accomplishing this key step.

 

In the next post in this series, we discuss how proteomics to help researchers understand the molecular underpinnings of cell identity.

 

Want to read the full series now? Download the “Accelerating basic research with proteomics” white paper here.

Browse by topic

  • Nautilus in the News
  • Events
  • Research and Collaborations
  • Applications of Proteomics
  • Nautilus and our Platform
  • Proteomics
  • Life at Nautilus
  • Industry Interviews
SUBSCRIBE
Back To Blog

Nautilus Biotechnology

 

Corporate Headquarters
2701 Eastlake Avenue East
Seattle, WA 98102

 

Research Headquarters
835 Industrial Road, Suite 200
San Carlos, CA 94070

 

     

+1 (206) 333-2001

© 2023 Nautilus Biotechnology Inc.
All Rights Reserved.

Privacy Policy | Terms of Use

We use cookies in order to continually improve your experience on our website. By clicking “Accept cookies” or clicking on any content on our site, you are consenting to our use of cookies as described in our Privacy Policy. You can opt-out if you wish. Accept Reject All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT